1 (i) AE = $\sqrt{(15^2 + 20^2 + 0^2)} = 25$	M1 A1 [2]	
(ii) $\overline{AE} = \begin{pmatrix} 15 \\ -20 \\ 0 \end{pmatrix} = 5 \begin{pmatrix} 3 \\ -4 \\ 0 \end{pmatrix}$	M1	Any correct form
Equation of BD is $\mathbf{r} = \begin{pmatrix} -1 \\ -7 \\ 11 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -4 \\ 0 \end{pmatrix}$	A1	or $\mathbf{r} = \begin{pmatrix} -1 \\ -7 \\ 11 \end{pmatrix} + \lambda \begin{pmatrix} 15 \\ -20 \\ 0 \end{pmatrix}$
$BD = 15 \Rightarrow \lambda = 3$ $\Rightarrow D \text{ is } (8, -19, 11)$	M1 A1cao [4]	$\lambda = 3 \text{ or } 3/5 \text{ as appropriate}$
(iii) At A: $-3 \times 0 + 4 \times 0 + 5 \times 6 = 30$	M1	One verification
At B: $-3 \times (-1) + 4 \times (-7) + 5 \times 11 = 30$ At C: $-3 \times (-8) + 4 \times (-6) + 5 \times 6 = 30$	A2,1,0	(OR B1 Normal, M1 scalar product with 1 vector in the plane, A1two correct, A1 verification with a point
Normal is $\begin{pmatrix} -3\\4\\5 \end{pmatrix}$	B1 [4]	OR M1 vector form of equation of plane eg $r=0i+0j+6k+\mu(i+7j-5k)+\nu(8i+6j+0k)$ M1 elimination of both parameters A1 equation of plane B1 Normal *)
(iv) $\begin{pmatrix} 4\\3\\5 \end{pmatrix} \overrightarrow{AE} = \begin{pmatrix} 4\\3\\5 \end{pmatrix} \begin{pmatrix} 15\\-20\\0 \end{pmatrix} = 60 - 60 = 0$ $\begin{pmatrix} 4\\3\\5 \end{pmatrix} \overrightarrow{AB} = \begin{pmatrix} 4\\3\\5 \end{pmatrix} \begin{pmatrix} -1\\-7\\5 \end{pmatrix} = -4 - 21 + 25 = 0$	M1 E1	scalar product with one vector in plane = 0
$\Rightarrow \begin{pmatrix} 4\\3\\5 \end{pmatrix} \text{ is normal to plane}$		scalar product with another vector in plane = 0
Equation is $4x + 3y + 5z = 30$.	M1 A1 [4]	$4x + 3y + 5z = \dots$ 30 OR as * above OR M1 for subst 1 point in 4x+3y+5z= ,A1 for subst 2 further points = 30 A1 correct equation, B1 Normal
(v) Angle between planes is angle between normals $\begin{pmatrix} 4\\3\\5 \end{pmatrix}$ and $\begin{pmatrix} -3\\4\\5 \end{pmatrix}$	M1	
$\cos \theta = \frac{4 \times (-3) + 3 \times 4 + 5 \times 5}{\sqrt{50} \times \sqrt{50}} = \frac{1}{2}$ $\Rightarrow \theta = 60^{\circ}$	M1 A1 A1	Correct method for any 2 vectors their normals only (rearranged) or 120° cao
	[4]	

PhysicsAndMathsTutor.com

Question	Answer	Marks	Guidance
2 (i)	AC = cosec θ	M1	or $1/\sin\theta$
	$\Rightarrow AD = \csc \theta \ \sec \varphi$	A1	oe but not if a fraction within a fraction
		[2]	
2 (ii)	$DE = AD \sin (\theta + \varphi)$ = cosec θ sec $\varphi \sin (\theta + \varphi)$ = cosec θ sec $\varphi(\sin \theta \cos \varphi + \cos \theta \sin \varphi)$	M1 M1	AD $sin(\theta + \varphi)$ with substitution for their AD correct compound angle formula used
	$= \frac{\sin\theta\cos\varphi + \cos\theta\sin\varphi}{\sin\theta\cos\varphi}$ $= 1 + \frac{\cos\theta}{\sin\theta}\frac{\sin\varphi}{\cos\varphi}$		Do not award both M marks unless they are part of the same method. (They may appear in either order.)
	$= 1 + \tan \varphi / \tan \theta *$	A1	simplifying using $tan = sin/cos$. A0 if no intermediate step as AG
	OR equivalent, eg from DE = CB + CD $\cos \theta$		
	$= 1 + CD \cos \theta$ $= 1 + AD \sin \varphi \cos \theta$	M1	from triangle formed by using X on DE where CX is parallel to BE to get $DX = CD \cos \theta$ and $CB = 1$ (oe trigonometry)
	$= 1 + \csc \theta \sec \varphi \sin \varphi \cos \theta$	M1	substituting for both $CD = AD \sin \varphi$ and their AD oe to reach an expression for DE in terms of θ and φ only (M marks must be part of same method)
	$= 1 + \tan \varphi / \tan \theta^*$	A1	AG simplifying to required form
		[3]	

3	$\overline{\mathbf{A}}\overline{\mathbf{B}} = \begin{pmatrix} -1\\2\\1 \end{pmatrix}, \overline{\mathbf{A}}\overline{\mathbf{C}} = \begin{pmatrix} -2\\-4\\0 \end{pmatrix}$	M1	scalar product with any two directions in the plane (BC= $\begin{pmatrix} -1 \\ -6 \\ \end{pmatrix}$)
	$\mathbf{n}.\overline{\mathbf{A}}\overline{\mathbf{B}} = \begin{pmatrix} 2\\-1\\4 \end{pmatrix} \cdot \begin{pmatrix} -1\\2\\1 \end{pmatrix} = 2 \times (-1) + (-1) \times 2 + 4 \times 1 = 0$	B 1	evaluatio needed
	$\mathbf{n}.\overrightarrow{AC} = \begin{pmatrix} 4 \\ -1 \\ 4 \end{pmatrix} \begin{pmatrix} -2 \\ -4 \\ 0 \end{pmatrix} = 2 \times (-2) + (-1) \times (-4) + 4 \times 0 = 0$	B1	evaluatio needed thus finding the scalar product with only one direction vector is M0
	\Rightarrow n is perpendicular to plane.		B1 B0. No marks for scalar product with position vectors. or SC finding direction of normal vector by using vector cross product, M1A1 eg $4i-2j+8k$ and showing this is a multiple of 2i-j+4k, A1
	Equation of plane is $\mathbf{r}.\mathbf{n} = \mathbf{a}.\mathbf{n}$ $\Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$	M1	For any complete method leading to the cartesian equation of the plane eg from vector form and eliminating parameters (there are many possibilities eg $r = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ -4 \\ 0 \end{pmatrix} x = 2 - \mu - 2\lambda, y = 2\mu - 4\lambda,$
	$\Rightarrow 2x - y + 4z = 8$	A1	$z=1+\mu$, $2x-y=4-4\mu=4-4(z-1)=8-4z$, $2x-y+4z=8$ gets M1 once the parameters have been eliminated. o
		[5]	SC1 If they say the plane is of the form $2x-y+4z=c$ and then show all points satisfy $2x-y+4z=8$ they can have M1 A1 for the first point and B2 for both the others. SC2 If they omit verification and find equation from vector form without using normal as above and then state $2i-j+4k$ is perpendicular they can get M1A1B2

4	$ \begin{pmatrix} 4+3\lambda\\2\\4+\lambda \end{pmatrix} = \begin{pmatrix} -1-\mu\\4+\mu\\9+3\mu \end{pmatrix} $ $ \Rightarrow 4+3\lambda = -1-\mu \ (1) $ $ 2 = 4+\mu \ (2) $ $ 4+\lambda = 9+3\mu \ (3) $	M1	equatin components
	$(2) \Longrightarrow \mu = -2$	B1	$\mu = -2$
	$(1) \Longrightarrow 4 + 3\lambda = -1 + 2 \Longrightarrow \lambda = -1$	A1	$\lambda = -$
	$(3) \Rightarrow 4 + (-1) = 9 + 3 \times (-2)$ so consistent	A1	checking third component
	Point of intersection is $(1, 2, 3)$	A1	dependent on all previous marks being obtained
		[5]	

5(i) $\overrightarrow{AB} = \begin{pmatrix} 2 \\ 3 \\ -5 \end{pmatrix}, \overrightarrow{BC} = \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix}$	B1 B1	
$\overrightarrow{AB}.\overrightarrow{BC} = \begin{pmatrix} 2\\ 3\\ -5 \end{pmatrix}. \begin{pmatrix} 5\\ 0\\ 2 \end{pmatrix} = 2 \times 5 + 3 \times 0 + (-5) \times 2 = 0$ $\Rightarrow AB \text{ is perpendicular to BC.}$	M1E1 [4]	
(ii) AB = $\sqrt{(2^2 + 3^2 + (-5)^2)} = \sqrt{38}$ BC = $\sqrt{(5^2 + 0^2 + 2^2)} = \sqrt{29}$ Area = $\frac{1}{2} \times \sqrt{38} \times \sqrt{29} = \frac{1}{2} \sqrt{1102}$ or 16.6 units ²	M1 B1 A1 [3]	complete method ft lengths of both AB, BC oe www

6	(i)	$x = -5 + 3\lambda = 1 \Longrightarrow \lambda = 2$ $y = 3 + 2 \times 0 = 3$ z = 4 - 2 = 2, so (1, 3, 2) lies on 1st line. $x = -1 + 2\mu = 1 \Longrightarrow \mu = 1$ y = 4 - 1 = 3 $z = 2 + 0 = 2, \text{ so } (1, 3, 2) \text{ lies on } 2^{\text{nd}} \text{ line.}$	M1 E1 E1 [3]	finding λ or μ verifying two other coordinates for line 1 verifying two other coordinates for line 2
	(ii)	Angle between $\begin{pmatrix} 3\\0\\-1 \end{pmatrix}$ and $\begin{pmatrix} 2\\-1\\0 \end{pmatrix}$	M1	direction vectors only
		$\cos\theta = \frac{3 \times 2 + 0 \times (-1) + (-1) \times 0}{\sqrt{10}\sqrt{5}}$	M1 A1	allow M1 for any vectors
		= 0.8485 $\Rightarrow \theta = 31.9^{\circ}$	A1 [4]	or 0.558 radians