1 (i) $\mathrm{AE}=\sqrt{ }\left(15^{2}+20^{2}+0^{2}\right)=25$	M1 A1 [2]	
(ii) $\overrightarrow{\mathrm{AE}}=\left(\begin{array}{l} 15 \\ -20 \\ 0 \end{array}\right)=5\left(\begin{array}{l} 3 \\ -4 \\ 0 \end{array}\right)$ Equation of BD is $\mathbf{r}=\left(\begin{array}{l}-1 \\ -7 \\ 11\end{array}\right)+\lambda\left(\begin{array}{l}3 \\ -4 \\ 0\end{array}\right)$ $\begin{aligned} & \mathrm{BD}=15 \Rightarrow \lambda=3 \\ & \Rightarrow \mathrm{D} \text { is }(8,-19,11) \end{aligned}$	M1 A1 M1 A1cao [4]	Any correct form or $\quad \mathbf{r}=\left(\begin{array}{l}-1 \\ -7 \\ 11\end{array}\right)+\lambda\left(\begin{array}{l}15 \\ -20 \\ 0\end{array}\right)$ $\lambda=3$ or $3 / 5$ as appropriate
(iii) At A: $-3 \times 0+4 \times 0+5 \times 6=30$ At B: $-3 \times(-1)+4 \times(-7)+5 \times 11=30$ At C: $-3 \times(-8)+4 \times(-6)+5 \times 6=30$ Normal is $\left(\begin{array}{l}-3 \\ 4 \\ 5\end{array}\right)$	M1 A2,1,0 B1 [4]	One verification (OR B1 Normal, M1 scalar product with 1 vector in the plane, A1two correct, A1 verification with a point OR M1 vector form of equation of plane eg $\mathrm{r}=0 \mathrm{i}+0 \mathrm{j}+6 \mathrm{k}+\mu(\mathrm{i}+7 \mathrm{j}-5 \mathrm{k})+v(8 \mathrm{i}+6 \mathrm{j}+0 \mathrm{k})$ M1 elimination of both parameters A1 equation of plane B1 Normal *)
(iv) $\begin{aligned} & \left(\begin{array}{l} 4 \\ 3 \\ 5 \end{array}\right) \cdot \overrightarrow{A E}=\left(\begin{array}{l} 4 \\ 3 \\ 5 \end{array}\right) \cdot\left(\begin{array}{l} 15 \\ -20 \\ 0 \end{array}\right)=60-60=0 \\ & \left(\begin{array}{l} 4 \\ 3 \\ 5 \end{array}\right) \overrightarrow{A B}=\left(\begin{array}{l} 4 \\ 3 \\ 5 \end{array}\right)\left(\begin{array}{l} -1 \\ -7 \\ 5 \end{array}\right)=-4-21+25=0 \end{aligned}$ $\Rightarrow \quad\left(\begin{array}{l}4 \\ 3 \\ 5\end{array}\right)$ is normal to plane Equation is $4 x+3 y+5 z=30$.	M1 E1 M1 A1 [4]	scalar product with one vector in plane $=$ 0 scalar product with another vector in plane $=0$ $4 x+3 y+5 z=\ldots$ 30 OR as * above OR M1 for subst 1 point in $4 x+3 y+5 z=, A 1$ for subst 2 further points $=30$ A1 correct equation, B1 Normal
(v) Angle between planes is angle between $\begin{aligned} & \text { normals }\left(\begin{array}{l} 4 \\ 3 \\ 5 \end{array}\right) \text { and }\left(\begin{array}{l} -3 \\ 4 \\ 5 \end{array}\right) \\ & \cos \theta=\frac{4 \times(-3)+3 \times 4+5 \times 5}{\sqrt{50} \times \sqrt{50}}=\frac{1}{2} \\ \Rightarrow \quad & \theta=60^{\circ} \end{aligned}$	M1 M1 A1 A1 [4]	Correct method for any 2 vectors their normals only (rearranged) or 120° cao

	Quest	Answer	Marks	Guidance
2	(i)	$\begin{aligned} & \mathrm{AC}=\operatorname{cosec} \theta \\ & \Rightarrow \quad \mathrm{AD}=\operatorname{cosec} \theta \sec \varphi \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { [2] } \end{aligned}$	or $1 / \sin \theta$ oe but not if a fraction within a fraction
2	(ii)	$\begin{aligned} & \mathrm{DE}=\mathrm{AD} \sin (\theta+\varphi) \\ & =\operatorname{cosec} \theta \sec \varphi \sin (\theta+\varphi) \\ & =\operatorname{cosec} \theta \sec \varphi(\sin \theta \cos \varphi+\cos \theta \sin \varphi) \\ & =\frac{\sin \theta \cos \varphi+\cos \theta \sin \varphi}{\sin \theta \cos \varphi} \\ & =1+\frac{\cos \theta}{\sin \theta} \frac{\sin \varphi}{\cos \varphi} \\ & =1+\tan \varphi / \tan \theta \end{aligned}$ OR equivalent, $\begin{aligned} \text { eg from } \mathrm{DE} & =\mathrm{CB}+\mathrm{CD} \cos \theta \\ & =1+\mathrm{CD} \cos \theta \\ & =1+\mathrm{AD} \sin \varphi \cos \theta \\ & =1+\operatorname{cosec} \theta \sec \varphi \sin \varphi \cos \theta \\ & =1+\tan \varphi / \tan \theta^{*} \end{aligned}$	M1 M1 A1 M1 M1 A1 [3]	$\mathrm{AD} \sin (\theta+\varphi)$ with substitution for their AD correct compound angle formula used Do not award both M marks unless they are part of the same method. (They may appear in either order.) simplifying using tan $=\sin /$ cos. A0 if no intermediate step as AG from triangle formed by using X on DE where CX is parallel to BE to get $\mathrm{DX}=\mathrm{CD} \cos \theta$ and $\mathrm{CB}=1$ (oe trigonometry) substituting for both $\mathrm{CD}=\mathrm{AD} \sin \varphi$ and their AD oe to reach an expression for DE in terms of $\boldsymbol{\theta}$ and φ only (M marks must be part of same method) AG simplifying to required form

5(i)	$\overrightarrow{\mathrm{AB}}=\left(\begin{array}{l}2 \\ 3 \\ -5\end{array}\right), \overrightarrow{\mathrm{BC}}=\left(\begin{array}{l}5 \\ 0 \\ 2\end{array}\right)$		
$\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{BC}}=\left(\begin{array}{l}2 \\ 3 \\ -5\end{array}\right) \cdot\left(\begin{array}{l}5 \\ 0 \\ 2\end{array}\right)=2 \times 5+3 \times 0+(-5) \times 2=0$			
$\Rightarrow \quad \mathrm{AB}$ is perpendicular to BC.	M1 B1		
(ii)$\mathrm{AB}=\sqrt{ }\left(2^{2}+3^{2}+(-5)^{2}\right)=\sqrt{ } 38$ $\mathrm{BC}=\sqrt{ }\left(5^{2}+0^{2}+2^{2}\right)=\sqrt{ } 29$ $\mathrm{Area}=1 / 2 \times \sqrt{ } 38 \times \sqrt{ } 29=1 / 2 \sqrt{ } 1102$ or 16.6 units ${ }^{2}$	$[4]$	M1 B1 A1 [3]	complete method ft lengths of both AB, BC oe www

6	(i)	$\begin{aligned} & x=-5+3 \lambda=1 \Rightarrow \lambda=2 \\ & y=3+2 \times 0=3 \\ & z=4-2=2 \text {, so }(1,3,2) \text { lies on 1st line. } \\ & x=-1+2 \mu=1 \Rightarrow \mu=1 \\ & y=4-1=3 \\ & z=2+0=2, \text { so }(1,3,2) \text { lies on } 2^{\text {nd }} \text { line. } \end{aligned}$	M1 E1 E1 [3]	finding λ or μ verifying two other coordinates for line 1 verifying two other coordinates for line 2
	(ii)	Angle between $\left(\begin{array}{l}3 \\ 0 \\ -1\end{array}\right)$ and $\left(\begin{array}{l}2 \\ -1 \\ 0\end{array}\right)$	M1	direction vectors only
		$\begin{aligned} \cos \theta & =\frac{3 \times 2+0 \times(-1)+(-1) \times 0}{\sqrt{10} \sqrt{5}} \\ & =0.8485 \ldots \\ \Rightarrow \quad \theta & =31.9^{\circ} \end{aligned}$	M1 A1 [4]	allow M1 for any vectors or 0.558 radians

